

Flood Risk Review Meeting Spring Creek, Poplar Creek, IL

October 4, 2018 South Barrington, IL

Introductions

ISWS Staff

- Mary Richardson Outreach Lead
- Glenn Heistand Senior Hydraulic Engineer
- Aaron Thomas Project Engineer
- Ryan Meekma GIS Team Lead
- Brad McVay GIS Specialist
- FEMA, Region 5
 - Ken Hinterlong Senior Engineer, Risk Analysis Branch

Increasing Resilience Togethe

- IDNR-OWR
 - Paul Osman- Illinois Department of Natural Resources, NFIP & Floodplain Management Manager

Agenda

1. Introductions (3 min)

- Mary Richardson, CFM
- 2. Meeting Goals and Brief Overview of Project (5 min)
 - Glenn Heistand, P.E., CFM

3. Hydrology & Hydraulic Details (15 min)

- Aaron Thomas, P.E., CFM
- 4. Review of Draft Work Maps (5 min)
 - Ryan Meekma, GISP, CFM
- 5. Flood Risk Assessment (12 min)
 - Brad McVay, GISP, CFM
- 6. Next Steps and Desired Outcomes (5 min)
 - Glenn Heistand, P.E., CFM
- 7. Comment Forms- Review and Discussion (remaining min)

Increasing Resilience Together

Meeting attendees

Meeting Goals

Community input throughout the FEMA map revision process is essential to flood risk management. You are getting the first possible look at the analysis and <u>DRAFT</u> results so that you can provide your feedback early on.

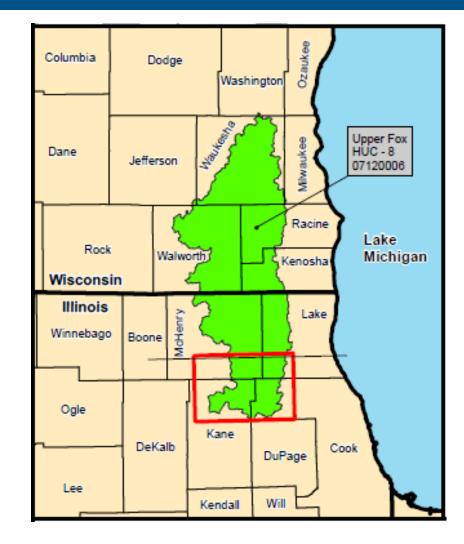
Flood Risk Review Meeting Goals:

- 1. Provide an overview of the Hydrologic and Hydraulic Analysis
- 2. Present the DRAFT Results
- 3. Answer questions about the analysis
- 4. Collect your concerns/feedback/technical data
- 5. Understand your flood risk

Risk MAP Overview

- 1. Discovery Meeting
- 2. Data and Product Development
- 3. Flood Risk Review Meeting
- 4. Resilience Meeting
- 5. Distribution of Maps and Data
- 6. CCO (Consultation Coordination Officer) Meeting and Public Open House
- 7. 90-Day Appeal Period
- 8. Flood Risk Products
- 9. Effective FIRM and FIS Report Issuance
- 10. Planning For Mitigation Action

https://www.fema.gov/risk-map-flood-risk-project-lifecycle



Cooperating Technical Partners

Risk MAP

Project History

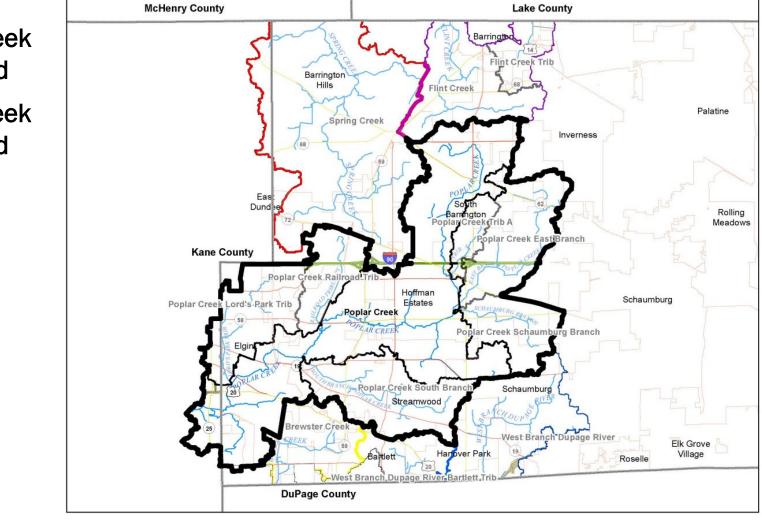
- FEMA Flood Insurance Rate Map Effective FIRM – Aug. 19, 2008
- MWRDGC Detailed Watershed Plan
 December, 2010
- Upper Fox River Watershed
 Discovery Meeting Nov. 29, 2012,
 McHenry, IL
- Upper Fox River Watershed Action-Discovery Meeting – Oct. 1, 2014, Algonquin, IL
- ISWS Data Development (H&H Modeling) – June, 2018
- Flood Risk Review Oct. 4, 2018, South Barrington, IL

P Cooperating Technical Partners

RiskMAP

Project Scope

Cooperating


Technical

Partners

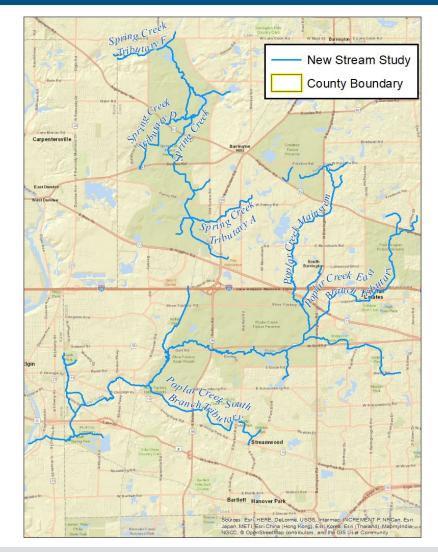
Ris

Increasing Resilience Together

- Poplar Creek
 Watershed
- Spring Creek Watershed

IILLINOIS

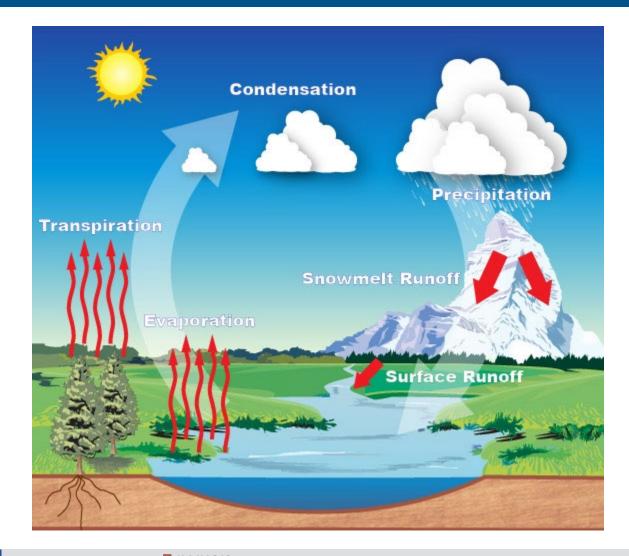
PRAIRIE RESEARCH INSTITUTE


Illinois State Water Survey

7

Project Scope

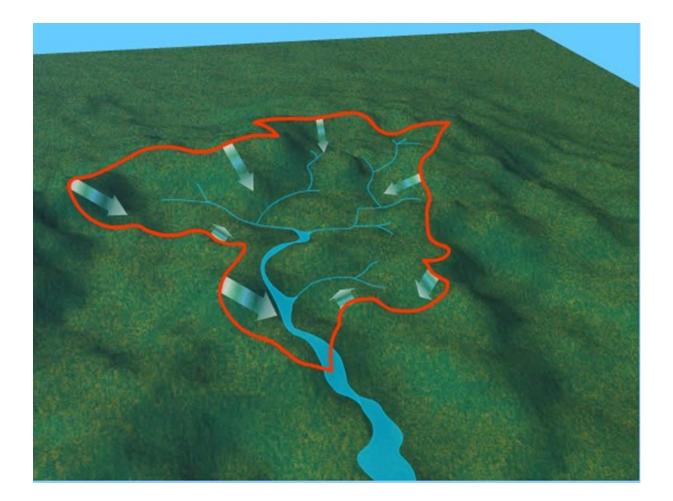
- 18 miles of Zone AE stream studies for Spring Creek Watershed
- 41 miles of Zone AE stream studies for Poplar Creek Watershed



RiskMAP

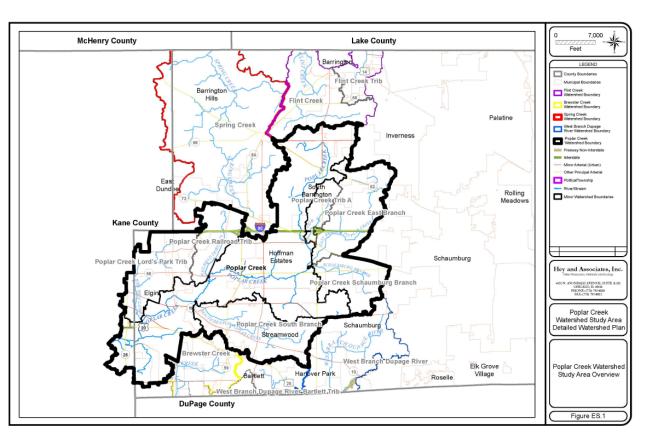
Hydrology & Hydraulics

Water Cycle



RiskMAP

- It all starts with run-off
- 2, 5, 10, 25, 50, 100, 100+, 500 year returninterval rainfall events studied
- 50%, 20%, 10%, 4%, 2%, 1%, 1%+, 0.2% annual chance rainfall events



RiskMAP Increasing Resilience Together ILLINOIS Illinois State Water Survey prairie research institute

- Upper Fox Watershed Description
 - Spring Creek:
 - Drainage Area = 19 н. sq. miles.
 - Counties = Cook, н. Kane, McHenry.
 - Tributary to the Fox н. River
 - Poplar Creek:
 - Drainage Area = 44sq. miles.
 - Counties = Cook & н. Kane.
 - Tributary to the Fox н. River.

Increasing Resilience Together

Ris

H&H Model Unsteady & Steady Methodologies

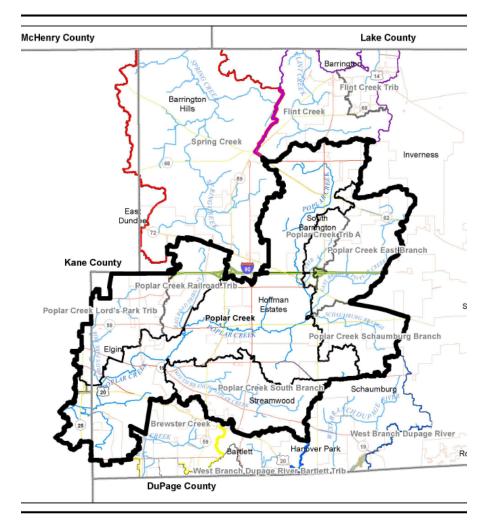
Modeling Timeline

1. 2010 Detailed Watershed Plan "DWP" Models (UNSTEADY-STATE)

- Unsteady HEC-RAS and HEC-HMS:
 - Subbasin hydrographs from HMS routed in HEC-RAS model.
 - Storage reservoirs modeled in unsteady HEC-RAS.
 - Peak flows from unsteady HEC-RAS
- Surveyed channel cross sections.
- 2003 Countywide LiDAR:
 - Watershed delineation, cross section overbanks, and floodplain mapping
- All elevations reference NAVD 88.
- Independent engineering review

2. 2015 FEMA contracted with ISWS to incorporate models into FEMA FIRMs.

- Model Methodology (STEADY-STATE):
 - a) ISWS HEC-HMS:
 - a) Remove storage areas from unsteady HEC-RAS and added to HEC-HMS;
 - b) Add channel routing to HEC-HMS;
 - c) Curve Numbers
 - d) Bulletin 71:
 - a) Used areal reduction factor. Slightly lower rainfall depths compared to 2010 DWP model.
 - e) Peak flows from HEC-HMS
 -) ISWS HEC-RAS:
 - a) Incorporate effective LOMRs:
 - Poplar Creek Schaumburg Branch (geometry, not flows)
 - b) Incorporated new culvert replacement under the I-90 tollway on Poplar Creek Tributary A.
 - c) New cross sections cut on 2008 LiDAR.
 - d) No interpolated cross sections
 - e) All elevations reference NAVD 88.
 - f) Manning's n-values kept the same as 2010 DWP model as much as possible.
 - g) Ineffective flow: contraction ratio 1:1; expansion ratio 2:1
- 1. Comparison:
 - 1. Differences in flows and water surface elevations between the 2010 DWP models and ISWS models can be attributed to the above.


Hydrology (HEC-HMS Rainfall-Runoff Model Inputs)

2010 DWP Analysis

- HEC-HMS version 3.5
- Soil Conservation Service (SCS) curve number (CN) loss method
- Parameters produced through HEC-geoHMS from geographic information systems (GIS) data
- land use: 2001 CMAP land use inventory
- soil data: 2002 U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) Soil Survey (SSURGO).
- Combined to produce Curve Numbers.

ISWS HEC-HMS Analysis

- Channel Routing:
 - Modified Puls, Muskingum-Cunge, and Lag methods
- Storage reservoirs:
 - Modified Puls
- Design Storms: Bltn 71, Huff distribution
- 24hr & 48 hr Critical Duration Poplar Creek Watershed
- 24hr Critical Duration Spring Creek Watershed

Poplar Creek Calibration (2010

DWP)

- Calibration
 - USGS gage 05550500 on Poplar ۰ mainstem based on August 19, 2007 (estimated < 10%-ACF) and September 12, 2008 (estimated 1%-ACF) events.

USGS

- **Curve Numbers calibration variable** ٠
 - ISWS did not revise CN's .

Spring Creek Calibration

- No gages. Used CN's from Poplar Creek • Watershed with some modifications to AMC.
- ISWS did not revise CN's ٠

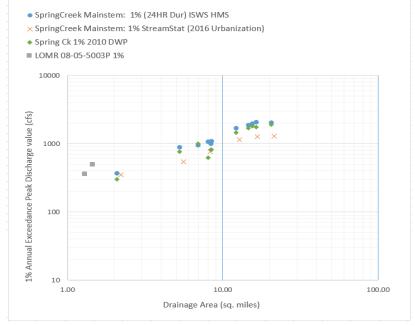
	FEMA
--	------

Increasing Resilience Together

0.3. 0.3.			stage		
streamgage		Drainage	gage	Period of record	
number	Name	area (mi²)	(CSG)		
	EAST BRANCH POPLAR CREEK NEAR			1961-	
05550430	PALATINE, IL	2.63	Yes	1977	17
				1961-	
05550450	POPLAR CREEK NEAR ONTARIOVILLE, IL	16.70	Yes	1977	17
	POPLAR CREEK TRIBUTARY NEAR BARTLETT,			1961-	
05550470	IL	5.15	Yes	1979	19
				1952-	
05550500	POPLAR CREEK AT ELGIN, IL	35.09	No	2015	64

Crest-

stage


64

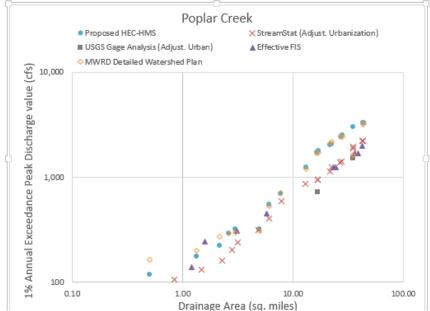
Spring Creek: Comparison of HEC-HMS proposed peak discharge values

- The majority of Effective FEMA mapping = Zone A. Discharges unavailable. LOMR 08-05-5003P is the only Zone AE w/discharge values.
- ISWS HEC-HMS discharges agree well with 2010 MWRD DWP values.
- ISWS HEC-HMS discharges along main stem are higher than USGS 2016 Streamstats (regression equations) w/urbanization adjustment.

Spring Creek HEC-HMS proposed Stillwater values

 Reservoirs modeled in HEC-HMS (see hydrologic workmap)

Poplar Creek: Comparison of HEC-HMS proposed peak discharge values


- Effective FEMA mapping = Zone A and Zone AE. Discharges available for Zone AE's.
- ISWS HEC-HMS discharges agree well with 2010 MWRD DWP values.

Increasing Resilience Togethe

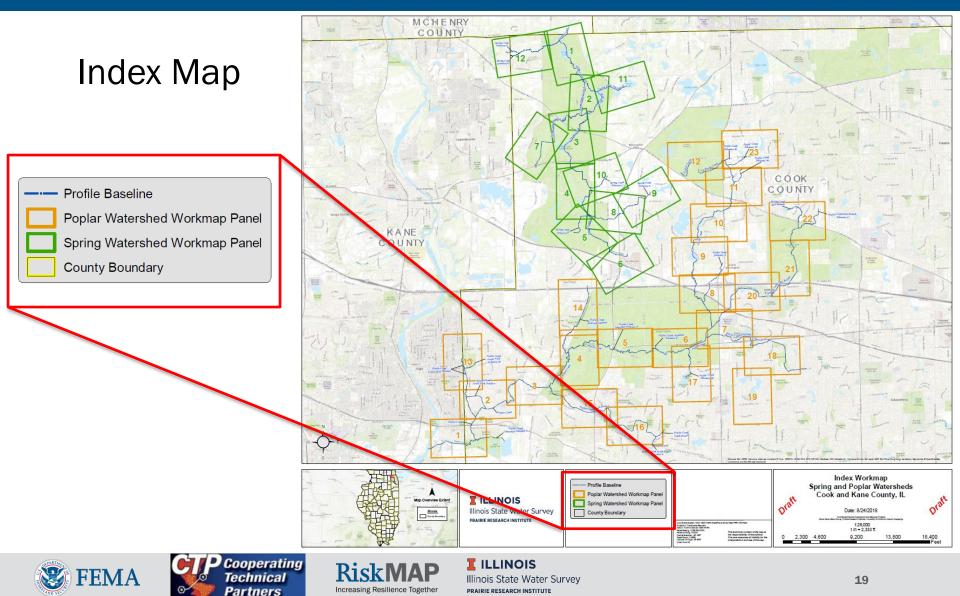
- ISWS HEC-HMS discharges along main stem are higher than USGS 2016 Streamstats (regression equations).
- Proposed discharges at certain locations are significantly higher than effective discharges (40 to 85%).
 - Mainstem, Schaumburg Branch, South Branch

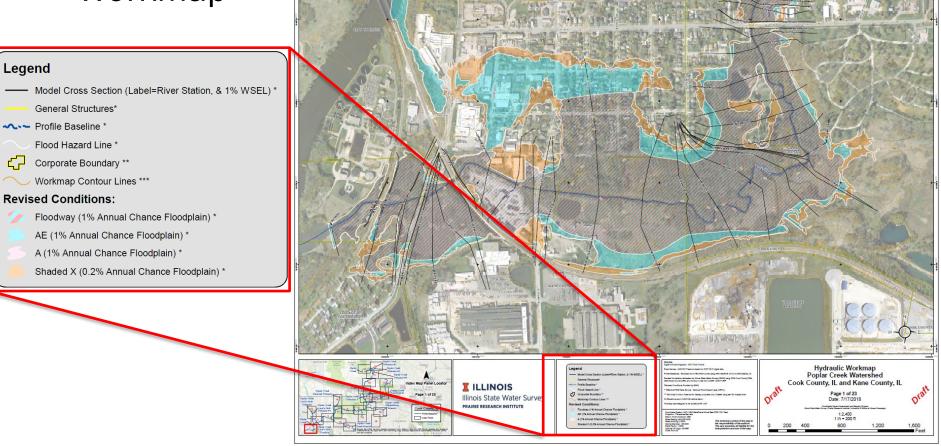
Poplar Creek HEC-HMS proposed Stillwater values

Reservoirs modeled in HEC-HMS (see hydrologic workmap)

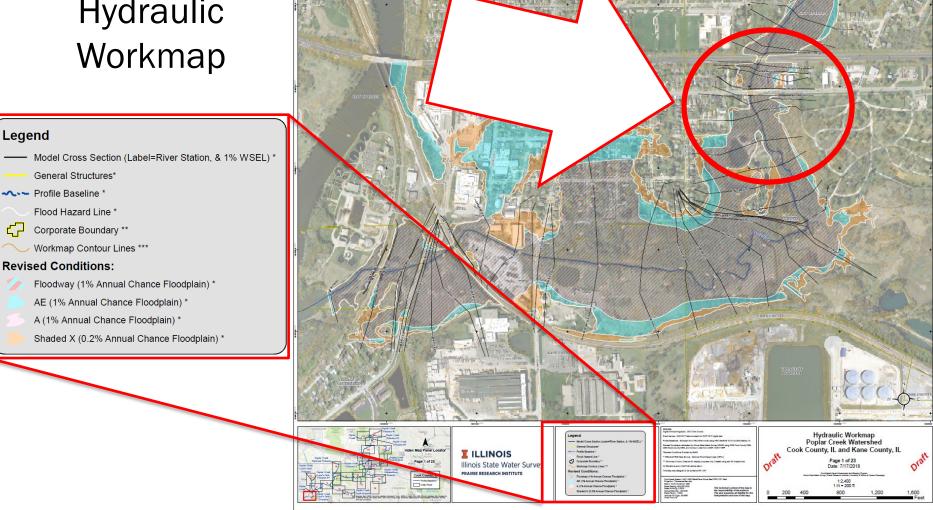
Hydraulics

- HEC-RAS VERSION 4.1:
 - Poplar Creek Watershed: 6 separate models
 - Spring Creek Watershed: 1 model
 - Floodplain Plan:
 - Ineffective flow areas:
 - Contraction ratio 1:1
 - Expansion ratio 2:1
 - FEMA Check-RAS
 - Water Surface Profiles:
 - 50%, 20%, 10%, 4%, 2%, 1%, 1%+, 0.2%
 - Floodway Plan:
 - State of Illinois Criteria (surcharge, velocity and volume)




- Index Map
- Hydraulic Workmap
- Floodplain Comparison Workmap
- Hydrology Workmap
- How to access maps:
 - Printed Maps at Meeting
 - Floodplain Comparison Workmap
 - Hydrology Workmap
 - Index Map
 - U of I BOX
 - ArcGIS Online Webmap
 - Viewing Data
 - Adding Comments

Hydraulic Workmap



RiskMAP

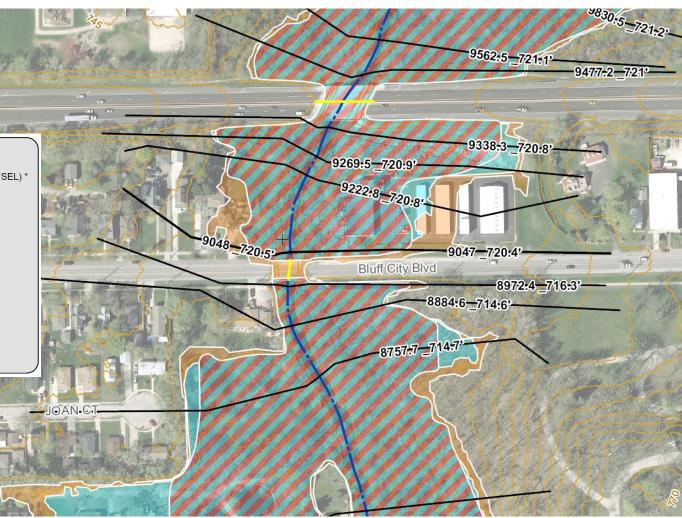
Map Overview (zoomed in)

Hydraulic Workmap

IILLINOIS Increasing Resilience Together

Risk

Map Overview (zoomed in)


Hydraulic Workmap

Legend

- Model Cross Section (Label=River Station, & 1% WSEL) *
- General Structures*
- ✓ Profile Baseline *
 - Flood Hazard Line *
- Corporate Boundary **
 - ✓ Workmap Contour Lines ***

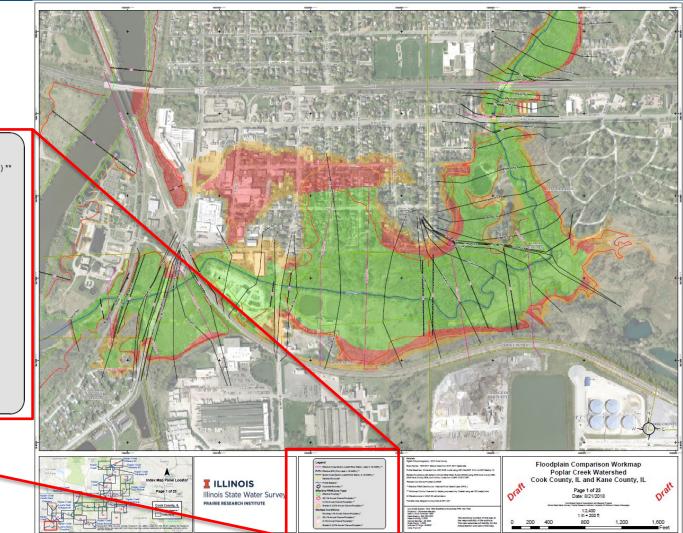
Revised Conditions:

- Floodway (1% Annual Chance Floodplain) *
 AE (1% Annual Chance Floodplain) *
- A (1% Annual Chance Floodplain) *
- Shaded X (0.2% Annual Chance Floodplain) *

RiskMAP

Floodplain Comparison Workmap

Legend


- Effective Cross Section (Label=River Station, Letter & 1% WSEL) **
- Effective BFE (Pink Label = 1% WSEL) **
- Model Cross Section (Label=River Station, & 1% WSEL) *
- General Structures*
- ✤ Profile Baseline *
- Corporate Boundary **

Effective FIRM Zone Type:

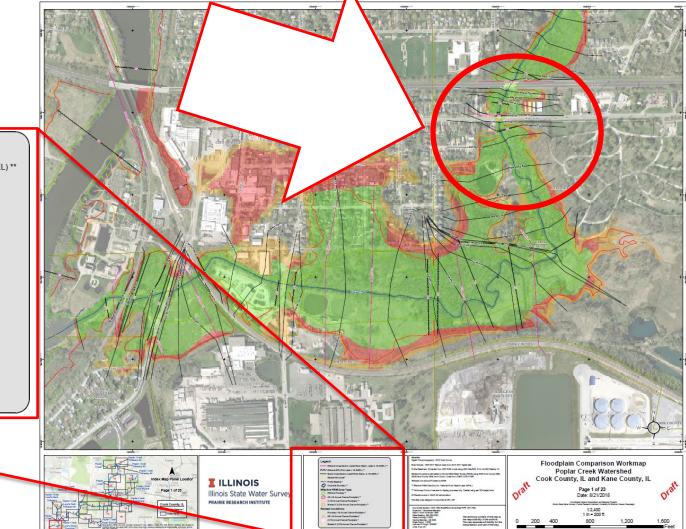
- S Effective Floodway **
- AE (1% Annual Chance Floodplain) **
 - A (176 Annual Chance Hoodplain)
- Shaded X (0.2% Annual Chance Floodplain) **

Revised Conditions:

- Floodway (1% Annual Chance Floodplain) *
- AE (1% Annual Chance Floodplain) *
- A (1% Annual Chance Floodplain) *
- Shaded X (0.2% Annual Chance Floodplain) *

RiskMAP

Map Overview (zoomed in)


Floodplain Comparison Workmap

Legend

- Effective Cross Section (Label=River Station, Letter & 1% WSEL) **
- Effective BFE (Pink Label = 1% WSEL) **
- Model Cross Section (Label=River Station, & 1% WSEL) *
- General Structures*
- ✓ Profile Baseline *
- Corporate Boundary **

Effective FIRM Zone Type:

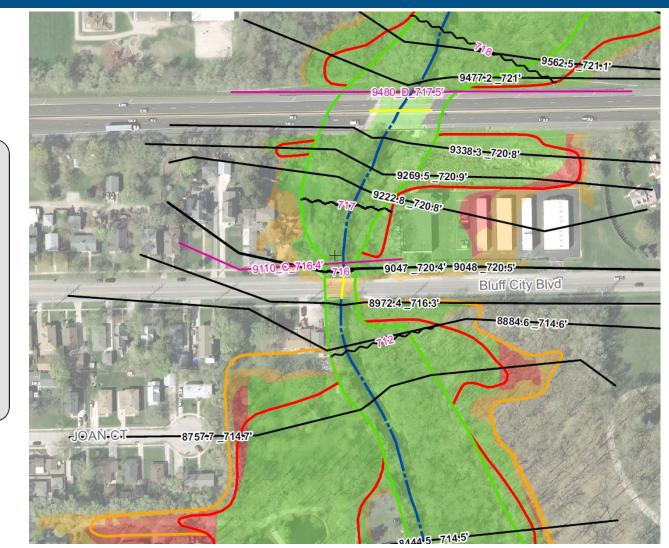
- 5 Effective Floodway **
- AE (1% Annual Chance Floodplain) **
- Shaded X (0.2% Annual Chance Floodplain) **
- Revised Conditions:
 - Floodway (1% Annual Chance Floodplain) *
 - AE (1% Annual Chance Floodplain) *
 - A (1% Annual Chance Floodplain) *
 - Shaded X (0.2% Annual Chance Floodplain) *

RiskMAP

Map Overview (zoomed in)

Floodplain Comparison Workmap

Legend

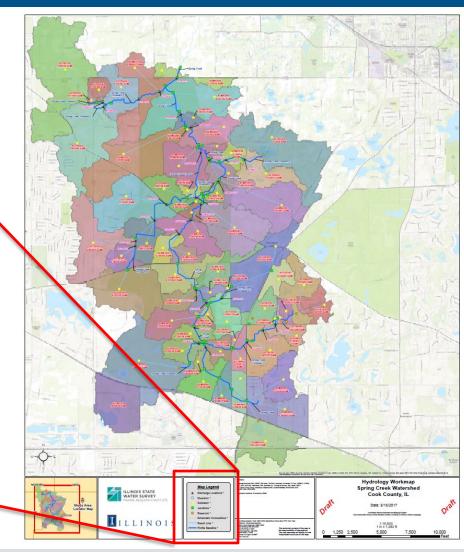

- Effective Cross Section (Label=River Station, Letter & 1% WSEL) **
- Effective BFE (Pink Label = 1% WSEL) **
- Model Cross Section (Label=River Station, & 1% WSEL) *
- General Structures*
- Profile Baseline *
- Corporate Boundary **

Effective FIRM Zone Type:

- S Effective Floodway **
- AE (1% Annual Chance Floodplain) **
 - A (1% Annual Chance Floodplain)
- Shaded X (0.2% Annual Chance Floodplain) **

Revised Conditions:

- Floodway (1% Annual Chance Floodplain) *
- AE (1% Annual Chance Floodplain) *
- A (1% Annual Chance Floodplain) *
- Shaded X (0.2% Annual Chance Floodplain) *



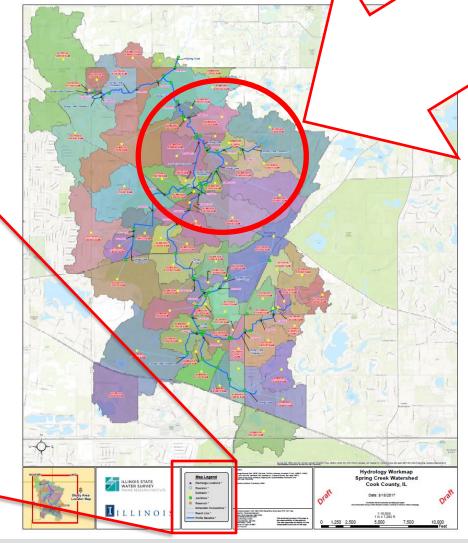
Risk MAP

Hydrology Workmap

Map Legend

- **Discharge Locations *** ★
- Diversion *
- Subbasin *
- Junctions *
- Reservoir *
- Schematic Connections *
- Reach Line *
- Profile Baseline *

Risk


IILLINOIS Illinois State Water Survey Increasing Resilience Together PRAIRIE RESEARCH INSTITUTE

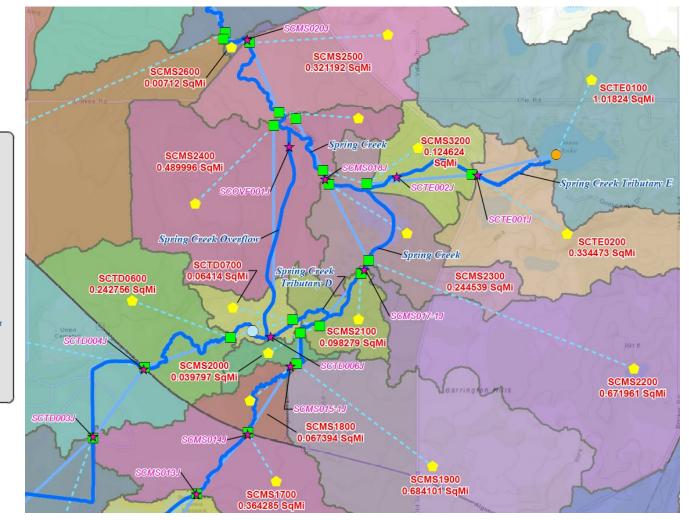
Map Overview (zoomed in)

Hydrology Workmap

Map Legend

- **Discharge Locations *** ★
- Diversion *
- Subbasin *
- Junctions *
- Reservoir *
- Schematic Connections *
- Reach Line *
- Profile Baseline *

Ris


Illinois State Water Survey Increasing Resilience Together PRAIRIE RESEARCH INSTITUTE

Map Overview (zoomed in)

Hydrology Workmap

Map Legend

- Discharge Locations * *
- Diversion *
- Subbasin *
- Junctions *
- Reservoir *
- Schematic Connections *
- Reach Line *
- Profile Baseline *

IILLINOIS Increasing Resilience Together

Risk

U of I BOX (online file sharing website)

Link distributed via email invitations

Cooperating

Technical

Partners

Ris

Increasing Resilience Together

Please request the link from Mary Richardson

U of I BOX

Univ	ERSITY OF ILLINOIS					Log in	Sign up	
FRR_	Poplar_Spring						Download	
	Name	Updated ~	Size		Details			
	Spring_Watershed	Aug 23, 2018 by Ryan Meekma	49 Files					
	Poplar_Watershed	Aug 23, 2018 by Ryan Meekma	93 Files		Owner Mary Richardson Enterprise Owner University of Illinois Created Aug 23, 2018, 7:35 AM			
Å	Making_WebMap_Comments.pdf	Sep 25, 2018 by Ryan Meekma	254.2 KB					
Å	Map_Instructions_README.pdf	Aug 24, 2018 by Ryan Meekma	256.8 KB					
٨	Index_Map.pdf	Aug 24, 2018 by Ryan Meekma	2.5 MB		Modified Sep 25, 20	18, 8:21 AI	м	
					Size 1.9 GB			

PRAIRIE RESEARCH INSTITUTE

Illinois State Water Survey

29

Web-Map go.illinois.edu/springcreek

ArcGIS - Poplar and Spring Creeks Flood Risk Review Meeting Comments

🔄 Details 🛛 🥖 Edit 🛛 📲 Basemap 🛛 📾 Share 🖶 Print 🗸 | 🚔 Measure 🛛 Find address or place Q 🚺 About 🔄 Content 📔 Legend Legend Cross Sections (Draft) Poplar & Spring Flood Risk Review - Comments (Points) Comment Flood Hazard Zones (Draft) Floodway (1% Annual Chance) AE (1% Annual Chance) A (1% Annual Chance) 0.2% Annual Chance Flood Hazard Boundary (Effective) oplar Ore

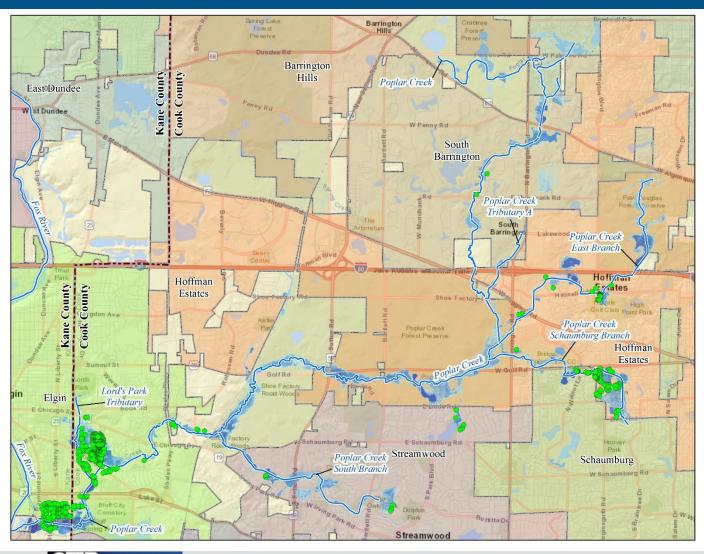
Esri.com . Help . Terms of Use . Privacy . Contact Esri . Report Abuse

Cooperating Technical Partners

RiskMAP

ILLINOIS Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

Adding Comments to the ArcGIS Online Web-Map


ArcGIS v Poplar and Spring Creeks Flood Risk Review Meeting Comments Modify Map Sign In 📾 Share 🖨 Print 👻 🚔 Measure 🛛 Find address or place Comments (Points) 2 **Comments** (Points Kingsley Allan, Illinois State Water Survey Name Category Category 1 Culvert Crossing on US34 near 15th Street Location 5/4/2018 Date 12:00:00 PM The road regularly floods Comments Attachments: None Add: Browse... Edited seconds ago Battlon Esri.com . Help . Terms of Use . Privacy . Contact Esri . Report Abuse FSA. GeoEve | Esri, HERE, Garr

Cooperating Technical Partners

Risk MAP

Flood Risk Assessment - Poplar

Scope of Flood Risk Assessment

Poplar Creek Watershed Studies

- Multi-frequency Flood Depth Grids
- Annual Percent Chance of Flooding Grid
- Chance of Flooding over 30 Years Grid
- HAZUS Level 2 Risk Assessment
- GIS Database
- Flood Risk Assessment Report
- Integrate into our online platform Structures at Flood Risk (SAFR)

FRA Data Deliverables

- Detailed, structure-by-structure flood risk data for each building in the floodplain.
 - Survey Data (almost 860 structures)
 - First Floor Elevation, Low Entry Elevation, Lowest Elevation Ground
 - Building Characteristics
 - Flood Risk Information

Flood Depth Grids

Flood Depth Grids Inputs, Outputs, and Delivery

Inputs:

- Multi-Frequency Water Surface Elevations
 - Derived from newer and effective models
- Topographic Data: 2008 LiDAR Cook & Kane Counties

Outputs:

- Flood Depth Grids for Multi-Frequencies
- Delivery:
 - File GeoDatabase Raster Dataset

10% Depth (10 year)

4% Depth (25 year)

2% Depth (50 year)

1% Depth (100 year)

0.2% Depth (500 year)

Purpose of Flood Depth Grids

- Help building officials, property owners and developers understand the elevation requirements for specific sites according to local flood damage prevention ordinances
- Use to identify areas of highest flood risk according to frequency and magnitude (depths) for possible mitigation actions
- Serve as pre-screening criteria for mitigation project potential (e.g. positive 10-yr depths)
- Communicate that hazard, and risk, varies within the mapped floodplain
- Inform land use and comprehensive planning decisions to guide development
- Use to revise zoning codes and subdivision regulations ensure appropriate land use in high-hazard areas

Flood Analysis Grids

Flood Analysis Grids Inputs, Outputs, and Delivery

Inputs:

- Multi-Frequency Water Surface Elevations
 - Derived from new models
- Topographic Data: 2008 LiDAR

Outputs:

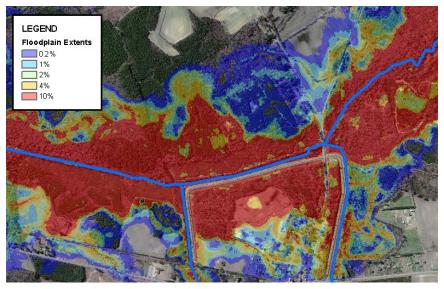
- Percent Annual Chance of Flooding
- Chance of Flooding Over 30 Years

Delivery:

• File GeoDatabase Raster Dataset

Percent Annual Chance of Flooding

0.4%

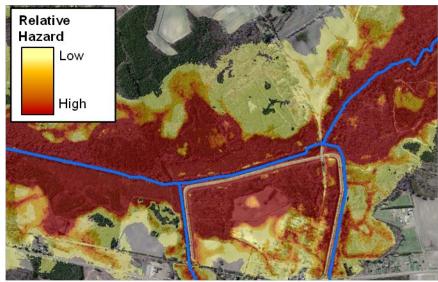

10% +

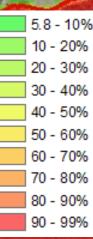
1%

Ø

Percent Annual Chance of Flooding Grid

Display Options


Relative Flood Hazard within Floodplain



Floodplain Extents for Each Flood Frequency

Percent Chance of Flooding over a 30-yr Period

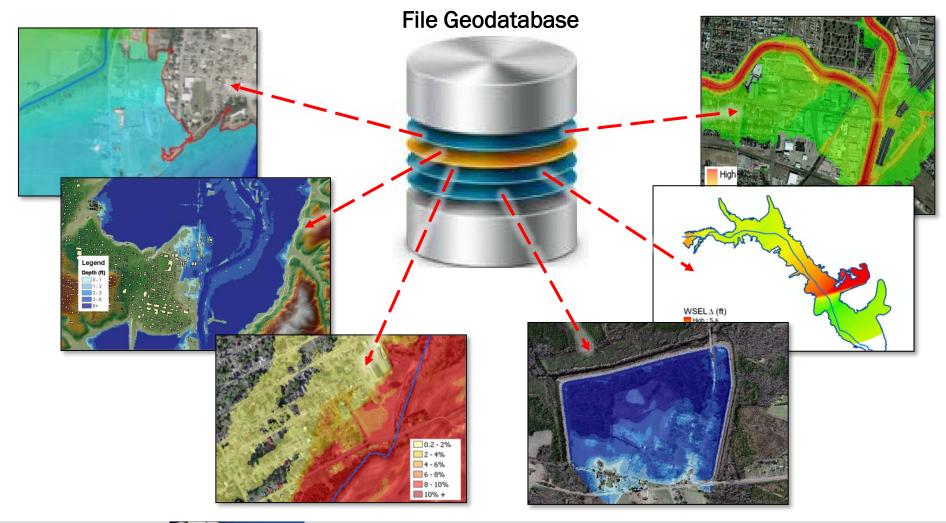
11%

AND SEC

96% +

26%

Ø


Purpose of Flood Analysis Grids

- Clear depiction of high flood risk areas for future planning
- Communicate / 'Show' flood inundation as function of event's magnitude or severity
- Increase flood risk awareness as acknowledged from varied contexts (depth, probability, etc)
- Communicate that hazard, and by extension risk, varies within the mapped floodplain

Flood Depth & Analysis Grids Delivered

Increasing Resilience Together

Flood Risk Assessment-Results by Community

What is Hazus?

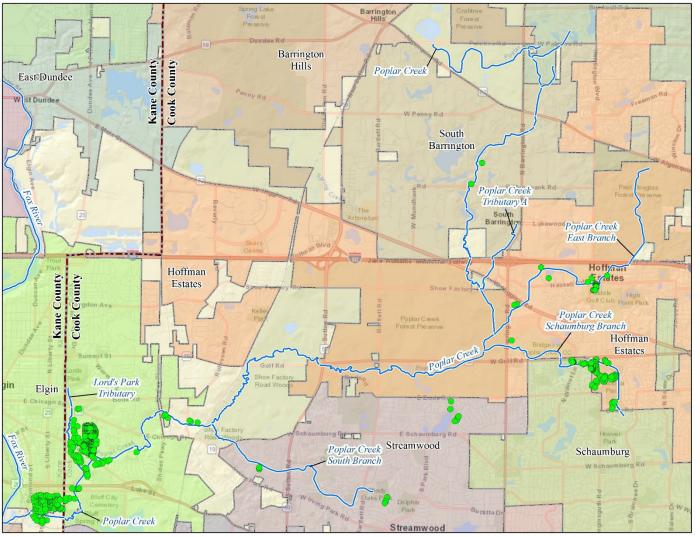
- Program designed by FEMA for the purpose of providing communities with the means to identify and reduce risk from natural hazards
- Program elements include:
 - Hazus-MH
 - User Groups
 - Education Program
 - Other resources

• Available from FEMA free of charge (requires ArcGIS license)

Hazus Results

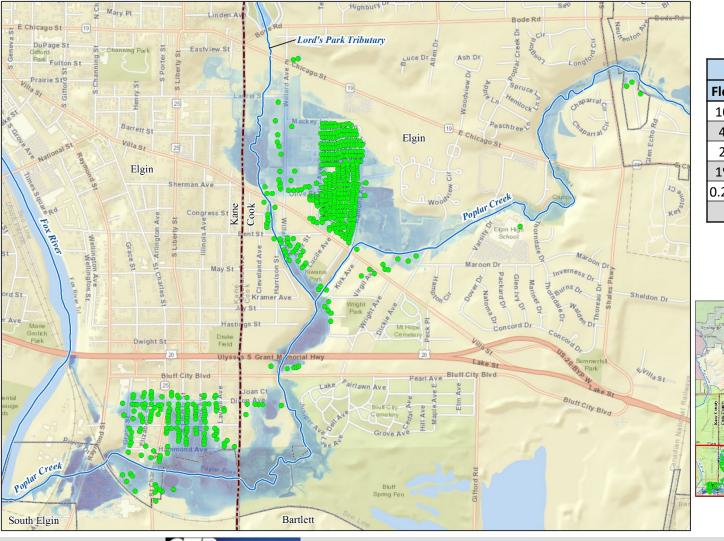
- Damages
 - Building Loss
 - Content Loss
 - Inventory Loss
 - Percent Damaged
- Average Annualized Loss

Increasing Resilience Togeth

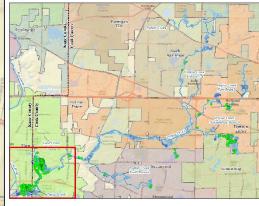

 Estimated long-term value of losses averaged on an annual basis

Project Area

Ris

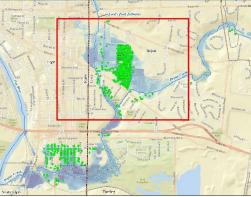

Increasing Resilience Together

1				
	Project Area			
	Flood Event	Structures	Total Loss	
	10% (10yr)	13	\$122,940	
	4% (25yr)	59	\$1,217,900	
	2% (50yr)	216	\$3,606,390	
	1% (100yr)	354	\$8,690,110	
	0.2% (500yr)	681	\$25,403,440	
	AAL	681	\$337,800	



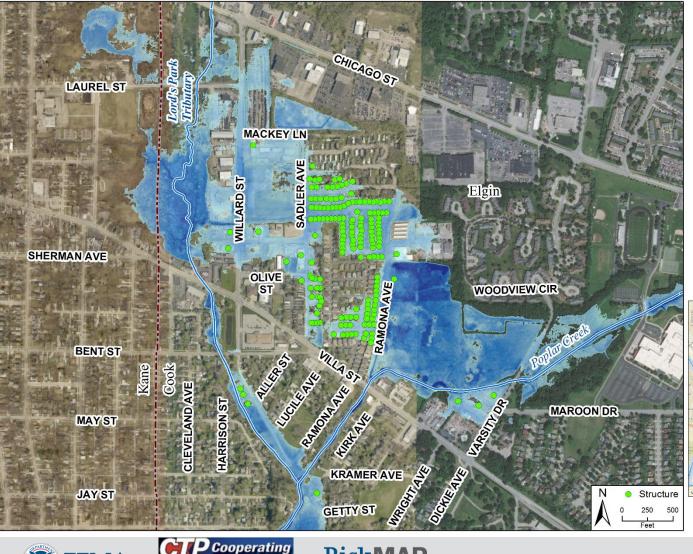
City of Elgin

	Elgin		
Flood Event	Structures	Total Loss	
10% (10yr)	13	\$122,940	
4% (25yr)	58	\$705,820	
2% (50yr)	215	\$2,842,800	
1% (100yr)	330	\$7,427,860	
0.2% (500yr)	532	\$21,251,920	
AAL	532	\$269,450	
	552	\$209,430	

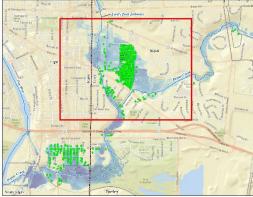

0

City of Elgin – 10% (10yr) Depth Grid

Elgin		
Flood Event	Structures	Total Loss
10% (10yr)	2	\$17,030

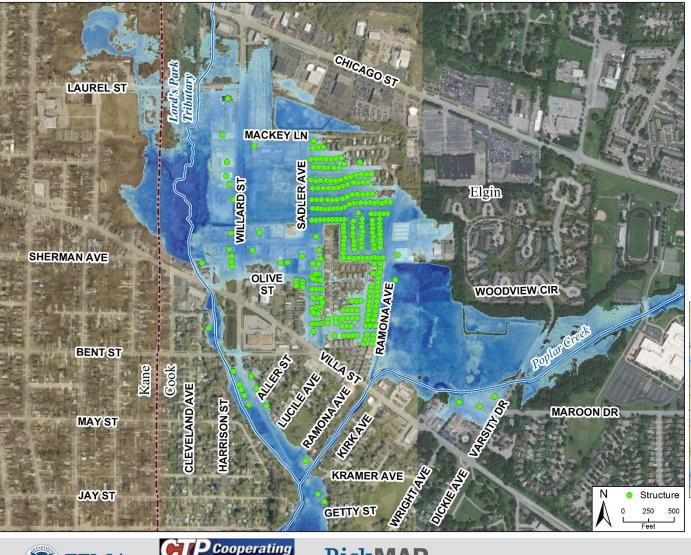


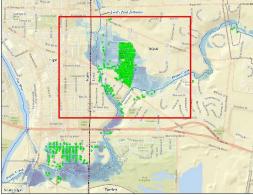
Technical


City of Elgin – 4% (25yr) Depth Grid

Increasing Resilience Together

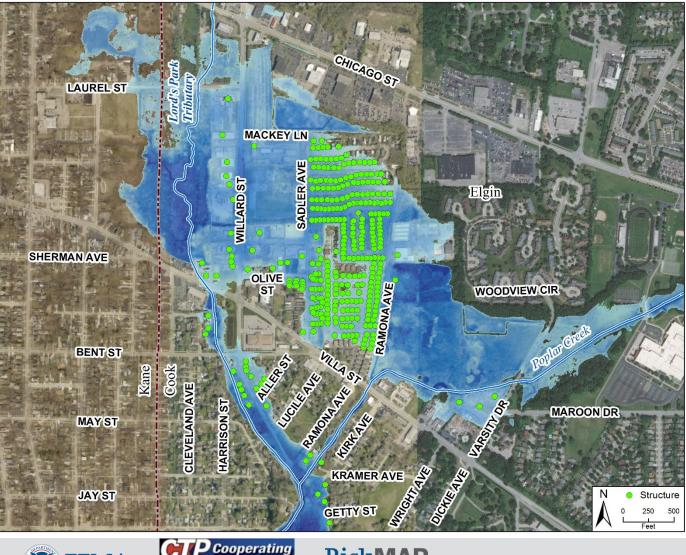
Technical

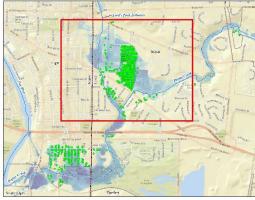

Elgin		
Flood Event	Structures	Total Loss
10% (10yr)	2	\$17,030
4% (25yr)	18	\$287,840



City of Elgin – 2% (50yr) Depth Grid

	Elgin		
Flood Event	Structures	Total Loss	
10% (10yr)	2	\$17,030	
4% (25yr)	18	\$287,840	
2% (50yr)	133	\$1,525,350	

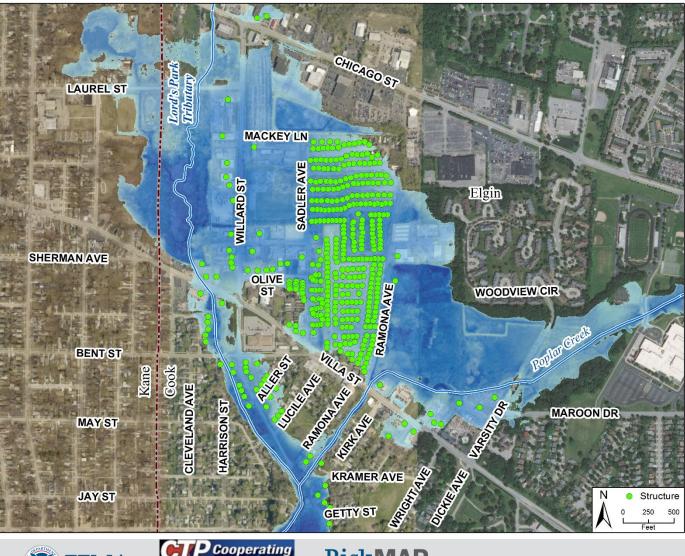




Technical

City of Elgin - 1% (100yr) Depth Grid

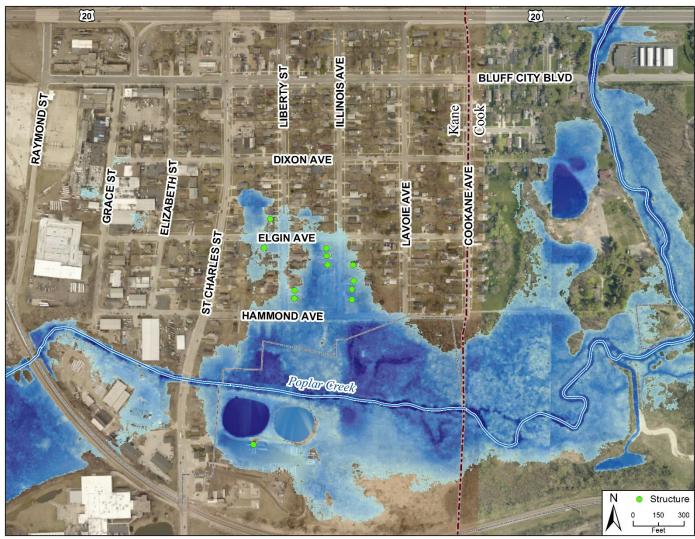
Elgin		
Flood Event	Structures	Total Loss
10% (10yr)	2	\$17,030
4% (25yr)	18	\$287 <i>,</i> 840
2% (50yr)	133	\$1,525,350
1% (100yr)	226	\$3,355,780

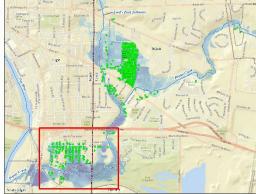


Technical

City of Elgin – 0.2% (500yr) Depth Grid

Elgin		
Flood Event	Structures	Total Loss
10% (10yr)	2	\$17,030
4% (25yr)	18	\$287,840
2% (50yr)	133	\$1,525,350
1% (100yr)	226	\$3,355,780
0.2% (500yr)	372	\$11,252,790

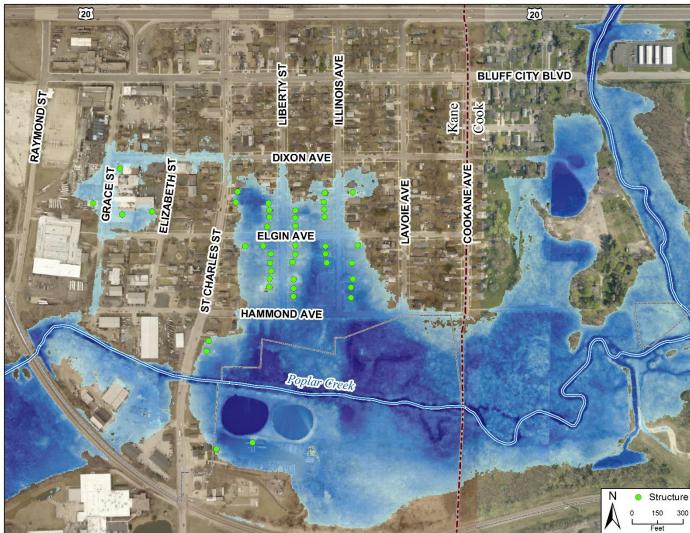




Technical

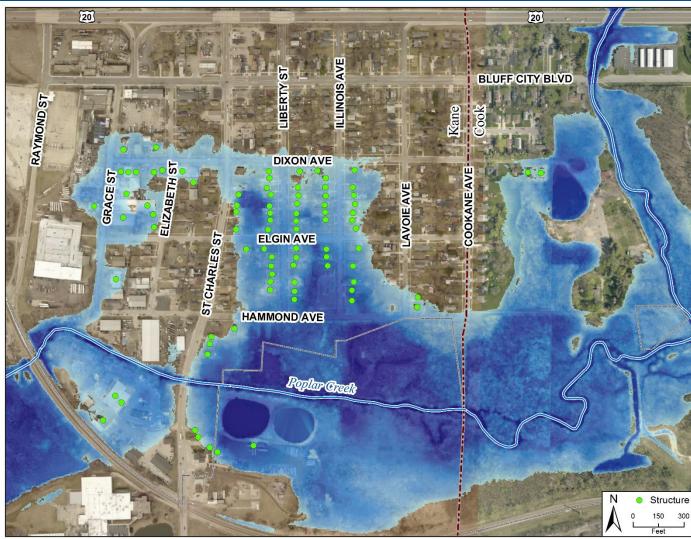
City of Elgin – 10% (10yr) Depth Grid

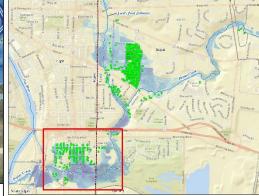
Elgin		
Flood Event	Structures	Total Loss
10% (10yr)	11	\$105,910



City of Elgin – 4% (25yr) Depth Grid

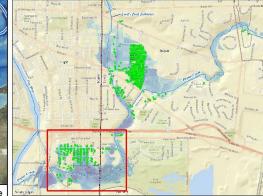
	Elgin	
Flood Event	Structures	Total Loss
10% (10yr)	11	\$105,910
4% (25yr)	40	\$417,980





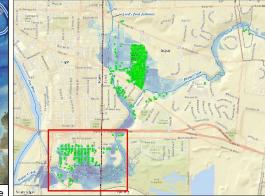
City of Elgin – 2% (50yr) Depth Grid

	Elgin		
Flood Event	Structures	Total Loss	
10% (10yr)	11	\$105,910	
4% (25yr)	40	\$417,980	
2% (50yr)	82	\$1,317,450	



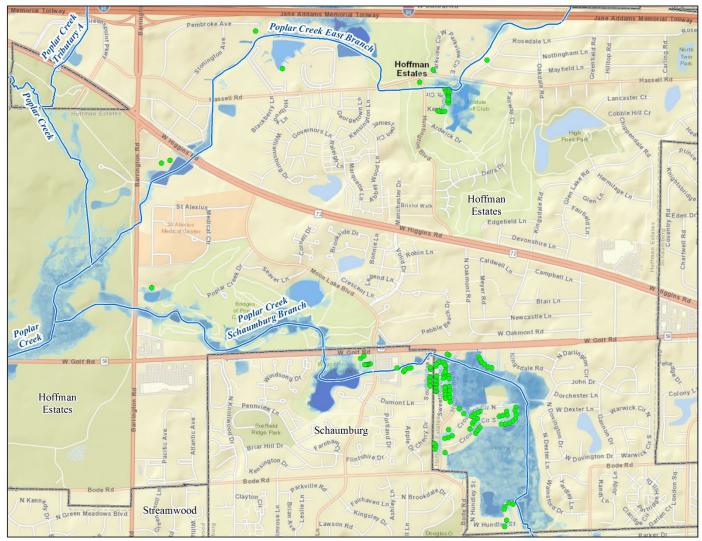
City of Elgin – 1% (100yr) Depth Grid

	Elgin		
Flood Event	Structures	Total Loss	
10% (10yr)	11	\$105,910	
4% (25yr)	40	\$417,980	
2% (50yr)	82	\$1,317,450	
1% (100yr)	104	\$4,072,080	

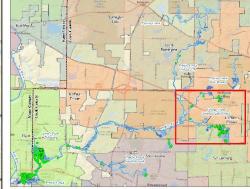


City of Elgin – 0.2% (500yr) Depth Grid

Elgin		
Flood Event	Structures	Total Loss
10% (10yr)	11	\$105,910
4% (25yr)	40	\$417,980
2% (50yr)	82	\$1,317,450
1% (100yr)	104	\$4,072,080
0.2% (500yr)	157	\$9,986,7 <mark>20</mark>

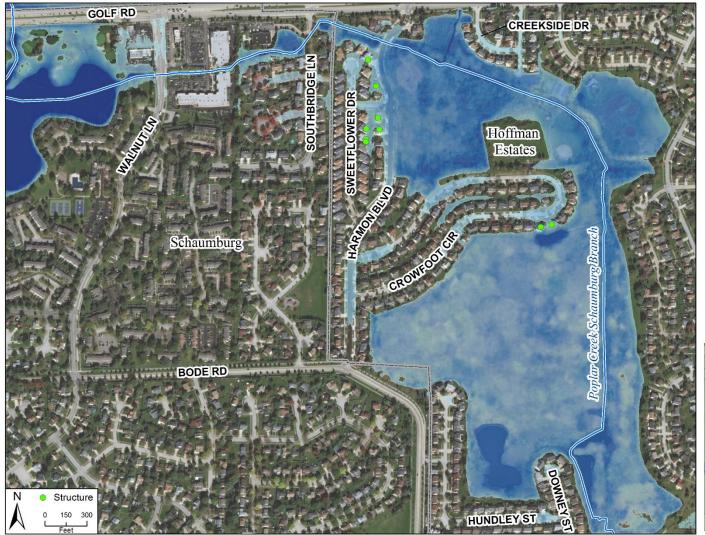


Village of Hoffman Estates, Village of Schaumburg


Increasing Resilience Together

Cooperating

Technical

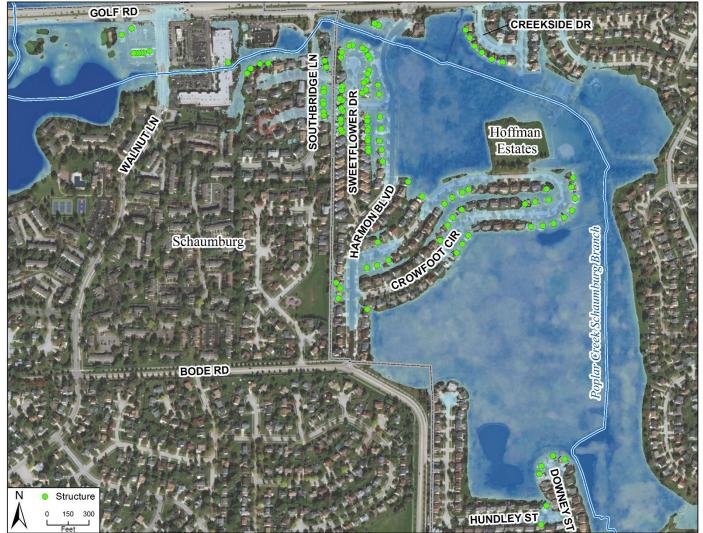

н	offman Estat	es
Flood Event	Structures	Total Loss
10% (10yr)	0	\$0
4% (25yr)	1	\$512,080
2% (50yr)	1	\$763 <i>,</i> 590
1% (100yr)	24	\$1,262,250
0.2% (500yr) 110	\$3,838,550
AAL	110	\$66,430

e,	Schaumburg	
Flood Event	Structures	Total Loss
10% (10yr)	0	\$0
4% (25yr)	0	\$0
2% (50yr)	0	\$0
1% (100yr)	0	\$0
0.2% (500yr)	21	\$176,250
AAL	21	\$1,080

Village of Hoffman Estates, Schaumburg – 1% (100yr) Flood

Но	offman Estat	es
Flood Event	Structures	Total Loss
1% (100yr)	9	\$70,000

•,	Schaumburg	
Flood Event	Structures	Total Loss
1% (100yr)	0	\$0

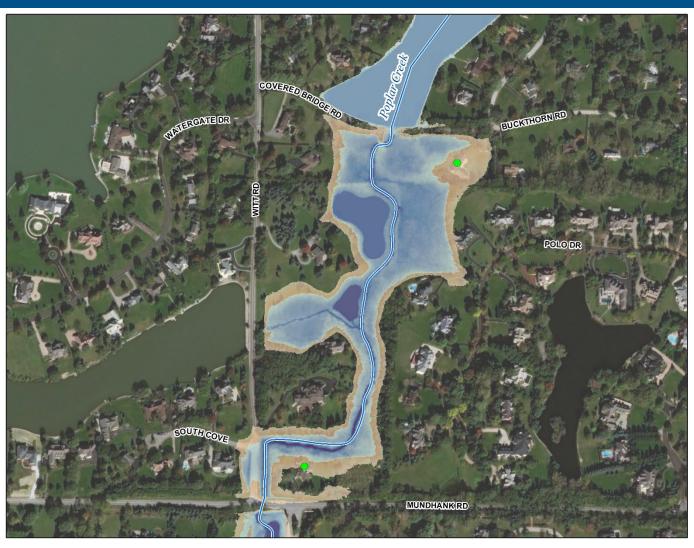


RiskMAP

Villages of Hoffman Estates & Schaumburg – 0.2% (500yr) Flood

Hoffman Estates		
Flood Event	Structures	Total Loss
1% (100yr)	9	\$70,000
0.2% (500yr)	86	\$804,610

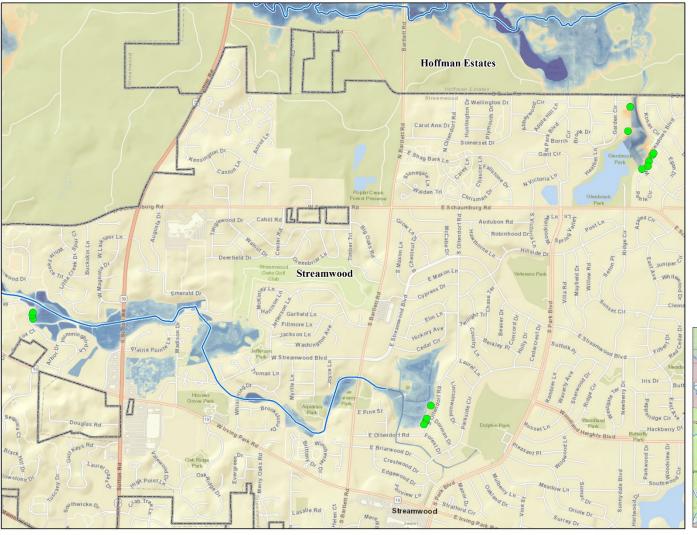
Schaumburg		
Flood Event	Structures	Total Loss
1% (100yr)	0	\$0
0.2% (500yr)	21	\$176,250

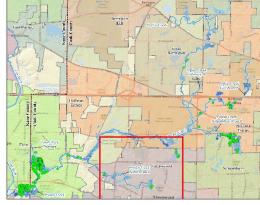


RiskMAP

Village of South Barrington

So	uth Barringt	on
Flood Event	Structures	Total Loss
10% (10yr)	0	\$0
4% (25yr)	0	\$0
2% (50yr)	0	\$0
1% (100yr)	0	\$0
0.2% (500yr)	2	\$73,930
AAL	2	\$450





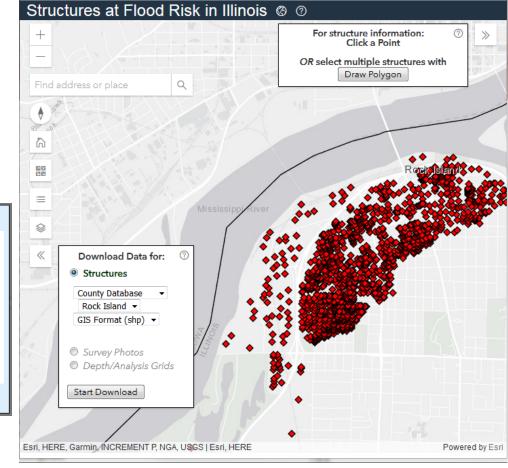
Village of Streamwood

S	treamwood	1
Flood Event	Structures	Total Loss
10% (10yr)	0	\$0
4% (25yr)	0	\$0
2% (50yr)	0	\$0
1% (100yr)	0	\$0
0.2% (500yr)	13	\$56,140
AAL	13	\$350

Structures at Flood Risk (SAFR) Site

Authentication	Required X
?	http://illinoisfloodmaps.org is requesting your username and password.
User Name:	
Password:	
	OK Cancel

Structures at Flood Risk in Illinois


This web mapping application provides access to digital data about structures in Illinois and their flood risk. It is not intended for use by the general public.

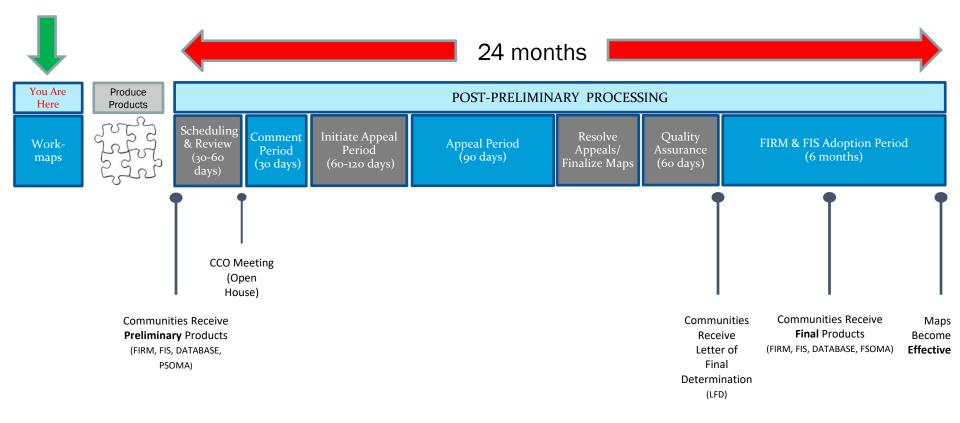
The creators of this web mapping application have made every effort to ensure accuracy of this information. However, this site is under development and is subject to disruptions for updates and revisions. User defined capabilities of the site and access to flood risk data will be limited during development so please check back periodically for availability.

By using this web mapping application, you acknowledge and accept the limitations presented herein, including the fact that the data will be updated on a periodic basis. Please do not quote or cite data.

I agree

Choose Area: Joliet V Continue

Download data countywide or select structures


Data Delivery

- Data will be available on Structures at Flood Risk (SAFR) site by the end of the month – CEOs, Floodplain Managers, and meeting attendees will be notified via email and given username and password
- FEMA Report will also be distributed by the end of the month
- Data can be viewed via site or downloaded and integrated into your own GIS system
- All data will be available for download survey, property info, risk, estimated losses, depth grids, analysis grids

Flood Insurance Rate Map (FIRM) Timeline

RiskMAP

ILLINOIS Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

We are asking for your input!

- Review the maps.
- ASK questions!
- Provide technical data and feedback.
 - Mapping discrepancies
 - Overtopped Roadways
 - Channel Improvements
 - New Bridges
 - New Studies
- Fill out the comment sheets.
- Mark up the maps.
- Get our contact information.

Risk MAP

ILLINOIS Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

Comment Forms

Comment Number

Provide data in electronic format when available!

Map Marked

		¤
Please, provide the following information:¤	Date:¤	
Name: ¤	Title:¤	
Community/County:¤		
E-mail:¤	Phone:¤	~
letters (e.g. 1A, 1B, 1C) for additional comme ¶ Check Comment Subject:¤		ت ت
□ * Technical Data for Consideration ¤	□+Planned or Recent Project Area/LOMR ¤	α
□+General Comment on DRAFT Results¤	+Historical Flood Information ¤	¤
□ • Mitigation Action In Proceeding	Chitigation Success#	¤
□ *At-Risk Essential Facilities¤	□ Interest in Beginning Mitigation Action	Ø
□+Other¤	ц	~~~
⊕ ¶		
Comment Marked on:¤		~
DRAFT Work Map #	¤ ¤ Other format (GIS, AutoCAD, Word, Excel, etc.)? yes o	_¤ ¤
1	format (GIS, AutoCAD, Word, Excel, etc.): yes of	noγω
N N		
		0
<u>й</u>		p

Ri

Illinois State Water Survey Increasing Resilience Together PRAIRIE RESEARCH INSTITUTE

Contact information

IILLINOIS

Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

- Mary Richardson, Illinois State Water Survey (217) 300-3479 mjr@illinois.edu
- Glenn Heistand, Illinois State Water Survey heistand@illinois.edu

